胶粘剂附着力基本原理分析

1、机械连接理论

  在亚微观状态下观察,基材表面是粗糙的,充满孔洞、凹陷。具有良好流动性能的液态胶粘剂流入并填满这些孔洞、凹陷,干燥固化后形成钩锚、榫接、铆合等机械连接力。基材的粗糙程度高、表面积大,附着力就大。只有当胶粘剂完全渗透到粗糙表面的不规则界面处,才对附着力有利。

  只要涂膜稍具流动性,就很少会产生不可释放应力。但随着涂膜粘度、刚性的增加和对基材附着力的形成,就会产生大量的应力。胶粘剂在基材的凹凸处的厚度显然不同,这种不同导致物理性质不同。不均一的涂层会产生很大的内部应力,甚至会导致膜层的破裂。

  2、化学键理论

  在界面间产生化学键,互相反应的化学基团牢牢结合在基材和胶粘剂上。这类连结最强且耐久性最好。

  含反应性基团如羟基和羧基的胶粘剂倾向于和含有类似基团的基材有更强的附着力。光谱分析法可证实这一点。

  3、静电理论

  胶粘剂和基材表面都带有残余电子而形成带电双电层,这些电子的相互作用也能提高附着力。

  静电力主要来源于色散力和由永久偶极子引起的相互作用力(一个分子的正电区和另一个分子的负电区)。诱导偶极子之间的吸引力称为色散力或伦敦力,是范德华力(分子间力)的一种。

  当胶粘剂分子与基材分子之间的间距超过0.5纳米(5埃)时,这些力的作用明显降低。所以保证一定压力用压辊使胶粘剂与基材紧密接触是非常重要的。

  4、扩散理论

  当胶粘剂与基材接触时,大分子的某些短链会向界面另一边进行不同程度的扩散。即链段穿过界面后相互扩散形成交错网状结构。

  由于长链性质不同及扩散系数较低,非相似聚合物通常不相容。完整的大分子穿过界面互相扩散是不可能的。实验表明,局部链段扩散很容易发生,并在界面产生10-1000埃的扩散界面层。


技术支持: 河南翼动力网络科技有限公司 | 管理登录
seo seo